syntheses of (22-9) and (2-8) linked neuraminylneuraminic acid derivatives $^{\rm 1}$

Kaoru Okamoto,[†] Tadao Kondo,^{††*} and Toshio Goto^{*} Laboratory of Organic Chemistry, Faculty of Agriculture; and ^{††}Chemical Instrument Center; Nagoya University Chikusa, Nagoya 464, Japan

Abstract: A newly prepared glycosyl donor, the acetyl protected 2β -bromo- 3β -hydroxy-<u>N</u>-acetylneuraminic ester was condensed with the protected 2-deoxy-2,3-dehydroneuraminic ester having a free hydroxy group at 9- or 8-position to form NeuAc(α 2-9)NeuAc and NeuAc(α 2-8)-NeuAc linkage, respectively, which are involved in the group C meningococcal polysaccharides and gangliosides. The obtained 3β -hydroxy disaccharides were phenoxythiocarbonylated, reduced with tri-<u>n</u>-butylstannane, and deprotected to give the free glycosides in high yields.

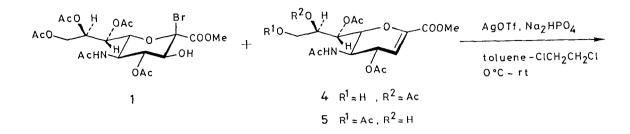
<u>N</u>-Acetylneuraminic acid (NeuAc) located at the non-reducing ends of carbohydrate chains of glycoproteins and glycolipids plays a role in biological recognition.^{2,3} Many attempts have been done with little success in the synthesis of NeuAc linked carbohydrate chains. In the previous papar,⁴ we have shown that the 2ß-bromo-3ß-hydroxy-NeuAc methyl ester 1⁵ was a useful glycosyl donor to afford NeuAc(α 2-3)Gal or NeuAc(α 2-3')Lac glycosides. We report here a successful application of this approach to the syntheses of NeuAc(α 2-9)NeuAc and NeuAc(α 2-8)NeuAc linkages involved in the group C meningococcal polysaccharides⁶ and gangliosides. This is the first synthesis of the NeuAc(α 2-8)NeuAc linkage.

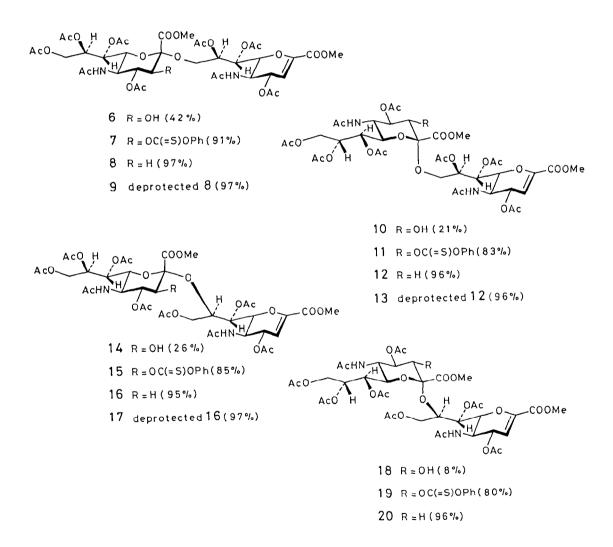
The glycosylation of the 9-unprotected 2,3-dehydro-NeuAc methyl ester 4^7 (1.1 equiv) with the 2-bromo-3-hydroxy derivative of peracetylated NeuAc methyl ester 1 in toluene-1,2-dichloroethane (1:1) in the presence of silver triflate (AgOTf) at 0 °C gave in 71% isolated yield a mixture of 2-9 linked di-NeuAc derivatives. The mixture was separated by the repeated silica gel column chromatography (benzene-acetone-methanol, gradient elution from 30:30:0 to 30:30:2) or by preparative ODS HPLC (methanol-water, 46:54) to the protected NeuAc-

⁺Present address: Institute of Bio-Active Science (IBAS), Nippon Zoki Pharmaceutical Co., Ltd., Kinashi, Yashiro-cho, Kato-gun, Hyogo 673-14, Japan.

5229

 $(\alpha 2-9)$ NeuAc glycoside 6^9 (mp 137-139 °C, 42% yield) and the corresponding β -glycoside 10^9 (21% yiled). As demonstrated earlier, the anomeric configuration was determined by analysis of ¹H-NMR spectrum. Thus, the J_{7,8} coupling constant of NeuAc units of 6 and 10 showed 8.4 and 2.7Hz, respectively, and $\Delta \delta |$ H-9'-H-9| values of them were 0.17 and 0.59ppm, respectively. These values agreed with those deduced from the empirical rule.¹⁰


In the above glycosylation condition, the bromide 1 reacted with the 8unprotected 2,3-dehydro-NeuAc methyl ester 5^{11} (1.0 equiv) giving a mixture of 2-8 linked di-NeuAc derivatives in 43% yield. The mixture was separated by preparative ODS HPLC (methanol-water, 45:55) to the NeuAc(α 2-8)NeuAc glycoside 14^9 (26% yield) and the NeuAc(β 2-8)NeuAc glycoside 18^9 (8% yield). The anomeric configuration was determined by the fact that in ¹H-NMR spectra the $J_{7,8}$ coupling constant of 14 and 18 showed 7.5 and 1.8Hz, respectively, and $\Delta\delta$ |H-9'-H-9| values of them were 0.41 and 0.91ppm, respectively.


The 38-hydroxy groups of the glycosides 6, 10, 14, and 18 were reduced to the corresponding 3-deoxy glycosides in the follwing way. The glycosides were treated with phenyl chlorothionocarbonate and 4-dimethylaminopyridine¹² in acetonitrile for 6 and 10, in DMF for 14, and in DMSO for 18 to give the thionocarbonates 7^9 (91% yield, $J_{7,8}$ =8.9Hz, $\Delta\delta|$ H-9'-H-9|=0.06ppm), 11^9 (83%, 4.0Hz, 0.62ppm), 15^9 (85%, 7.5Hz, 0.42ppm), and 19^9 (80%, 2.7Hz, 0.85ppm), respectively. Reduction of the thionocarbonates with tri-<u>n</u>-butylstannane afforded 8^9 (97% yield, $J_{7,8}$ =8.9Hz, $\Delta\delta|$ H-9'-H-9|=0.18ppm), 12^9 (96%, 3.4Hz, 0.67ppm), 16^9 (95%, 7.8Hz, 0.53ppm), and 20^9 (96%, 2.7Hz, 0.91ppm), in which 20 was identical with the previously obtained authentic sample.¹¹ The $J_{7,8}$ coupling constant and $\Delta\delta|$ H-9'-H-9| value remained unaltered in each series of α - and β -glycosides, even if the C-3 was substituted with hydroxy or phenoxythiocarbonyl group. Deacetylation (<u>t</u>-BuOK in methanol at room temp) and saponification (1N NaOH in methanol at room temp) of 8, 12, and 16 afforded the deprotected di-NcuAc 9, ⁹

In conclusion, we found that the 2β -bromo- 3β -hydroxy-NeuAc derivative 1 is a useful donor for the glycosylation of the 8- or 9-unprotected peracetyl 2,3dehydro-NeuAc methyl ester since the 3β -hydroxy group of the bromide 1 prevents the dehydrohalogenation reaction and assists the glycosylation reaction.¹³ The 2,3-double bond present in the glycosylation products can be used for further glycosylation <u>via</u> the corresponding 2β , 3β -bromohydrin.⁵

REFERENCES AND FOOTNOTES

- 1. Synthetic Studies on gangliosides 5.
- A. Rosenberg and C.-L. Schengrund, "Biological Roles of Sialic Acid," Plenum Publishing Corporation, New York, 1976.
- 3. J. Montreuil, Adv. Carbohydr. Chem. Biochem., 37, 157 (1980).
- 4. K. Okamoto, T. Kondo, and T. Goto, Tetrahedron Lett., preceding paper in

this issue.

- 5. K. Okamoto, T. Kondo, and T. Goto, Bull. Chem. Soc. Jpn., in contribution.
- 6. H. J. Jennings and A. K. Bhattacharjee, <u>Carbohydr. Res</u>., 55, 105 (1979);
 E. C. Gotschlich, B. A. Fraser, O. Nishimura, J. B. Robbins, and T.-Y. Lui,
 J. Biol. Chem., 256, 8915 (1981).
- 7. The glycosyl acceptor 5 having a free hydroxy group at 9-position was prepared from 2-deoxy-2,3-dehydro-NeuAc methyl ester 2⁸ in the follwing two steps: (i) trityl chloride in pyridine at 60 °C for 2 h, then Ac₂O-pyridine at 60 °C for 1 h (4,7,8-tri-O-acetyl-9-O-Tr 3⁹, 84%); (ii) 90% AcOH at 60 °C for 1 h (9-ol 4⁹, 71%).
- 8. P. Meindl and H. Tuppy, Monatsh. Chem., 100, 1295 (1969).
- 9. Satisfactory elemental analyses were obtained for these compounds. $[\alpha]_D$ and ¹H-NMR data (non-reducing NeuAc unit in chloroform-d) are shown below.

Com- pound	[α] _D a	Chemical shifts (δ) and J _{7,8} coupling constants, Hz in ¹ H-NMR											
		H-3eq (dd)	H-3a; (dd)	(dd)	H-5 (ddd)	H-6 (dd)	H-7 (dd)	H-8 (ddd)	H-9 (dd)	H-9' (dd)	Me ester (s)	: NH (d)	J7,8
3	+38.3°		05 ^b		4.27	4.48	5.58	5.37	3.24	3.40	3.75	5.66	5.5
4	+58.7°	5.	98 ^b	5.52	4.49	4.39	5.46	5.11	3.61	24.05	3.81		
6	+29.9°		3.77	5.22	4.16	4.62	5.27	5.36	4.08	4.25	3.81 ^d		
7	+35.3°		5.68 ^k	⁰ 5.73	4.19	4.88	5.30	5.48	4.17	4.23	3.80 ^d		
8	+17.8°		1.89	4.94 ^C	3.97	4.13	5.33	5.40	4.12	4.30	3.80 ^d	5.37	8.9
9 ^e	+12.7°			3.77 ^C	3.88	3.81	3.54	3.87	3.62	3.85	7		8.9
10	+23.9°			5.24				5.05			3.82 ^a		2.7
11	+35.4°		5.82 ^k	⁰ 5.54				5.19			3.80 ^d		
12	+35.1°			5.28 ^C				5.17			3.81 ^d	6.26	3.4
13 ^e	+ 6.6°1			4.10 ^C	3.93	93.93	3.56	3.84	3.64	3.83			
14	+27.4°			5.24	4.19	4.38	5.24	5.28	3.96	4.37	3.83 ^d		
15	+35.4°			⁰ 5.47				5.34			3.81 ^d		
16	+22.3°			4.88 ^C				5.31			3.83 ^d	5.14	7.8
17 ^e	+35.7° ^f			3.66 ^C	3.84	93.67	3.54	3.78	3.62	3.83	_		
18	+20.3°			4.99				5.32			3.82 ^d		
19	+22.9°							5.33			3.79 ^d		
20	+31.2°	2.49	1.84	5.09 ^C	4.08	4.62	5.37	5.31	4.01	4.92	3.78 ^d	6.06	2.7

^a Measured in chloroform. ^b Multiplicity: d. ^c Multiplicity: ddd. ^d Assignments may be interchanged with reducing unit. ^e Measured in D_2O (<u>t</u>-BuOH=1.23 ppm). ^f Measured in water. ^g Multiplicity: dd.

- 10. K. Okamoto, T. Kondo, and T. Goto, <u>Bull. Chem. Soc. Jpn.</u>, in contribution; H. Paulsen and H. Tietz, <u>Carbohydr. Res.</u>, **125**, 47 (1984).
- 11. K. Okamoto, T. Kondo, and T. Goto, Chem. Lett., in press.
- 12. M. J. Robins and J. S. Wilson, <u>J. Am. Chem. Soc</u>., 103, 932 (1981).
- 13. When the 3-Q-acetylated compound of 1 was used in this glycosylation, no glycosides was obtained.

(Received in Japan 10 July 1986)